skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ouattara, Mamadou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background:Schistosomiasis is endemic throughout all regions of Côte d’Ivoire, however, species of the intermediate snail host vary across bioclimatic zones. Hence, a deeper knowledge of the influence of climatic on the life history traits of the intermediate snail host is crucial to understand the environmental determinants of schistosomiasis in a rapidly changing climate. The aim of this study was to run a common garden experiment to assess differences in survival, somatic growth and fecundity of bothBulinus truncatusandBiomphalaria pfeifferisnails collected in three different bioclimatic areas. Methods:A cross-sectional malacological survey was conducted in February 2021 in the south, center and north of Côte d’Ivoire. We sampled two populations ofB. truncatus, the intermediate host snail ofSchistosoma haematobium, from northern and central Côte d’Ivoire, and two populations ofBi.pfeifferi, the intermediate host snail forSchistosoma mansoni, from the southern and central regions. Snails collected at the human-water contact sites were brought in the laboratory where they reproduced. The first generation snails (G1) for each population were reared under the same laboratory conditions, i.e., at 24°C–26°C, during 63 days (9 weeks), to estimate survival, growth, and fecundity. Results:We found that G1Bulinussnails from the north population showed higher survival and growth rates during our study and higher number of eggs at first reproduction, compared to the ones from the central region. ForBi.pfeifferi, no significant difference in survival rate was observed between G1snails from the southern and central populations, whereas those from the south exhibited higher growth rates and higher number of eggs per individual at first reproduction than G1snails from the central population. Conclusion:Our study provides evidence for heterogeneity in snails’ life-history traits in response to temperature among the populations from the three climatic regions. Further experiments from multiple populations are needed to confirm that snails express traits under optimal conditions, can lead to expansion of their geographical range and hence an increase in the risk of schistosomiasis transmission. Transplantation experiments will be required to assess implications of the changing climate on snails persistence, distribution and abundance. 
    more » « less
  2. Coffeng, Luc E (Ed.)
    The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis’ thermal optimum at 21.7°C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages ofS.mansoniandS.haematobiumand their obligate host snails, i.e.,Biomphalariaspp. andBulinusspp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission ofS.mansoniandS.haematobiumrange between 23.1–27.3°C and 23.6–27.9°C (95% CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum. 
    more » « less